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Based on the concept of free energy, we derive a Hamiltonian formulation for molecular dynamics
in torsion space. The appropriate reaction coordinates for the free energy calculations are defined
in terms of soft constraints as introduced by Brooks, Zhou, and Reich (unpublished) in the context

of molecular dynamics.

We consider a few simplifications that allow one to calculate the free

energy analytically and to write the corresponding equations of motion as a constraint Hamiltonian
system that can conveniently be discretized by the well known SHAKE algorithm. The additional
computational costs, compared to using the orginal force field and constraining bond lengths and
bond angles to their equilibrium value (hard constraints), amount, in general, to less than a complete
force evaluation. We show, for a single butane molecule, that our Hamiltonian formulation yields
the correct Boltzmann distribution in the torsion angle while the original Hamiltonian, together
with hard constraints on the bond lengths and bond angles, results in a much reduced transition

rate between the trans and cis configuration.

PACS number(s): 02.70.Ns, 05.20.Gg, 82.20.Wt, 82.20.Fd

I. INTRODUCTION

For classical molecular dynamics, atomic trajectories
obey the Hamiltonian equation of motion

d

J— — -1

77 M~ "p,

d (1)
7P = -VVi(q),

where g is the vector containing all positions (in Carte-
sian coordinates), p is the vector containing all conjugate
momenta, M is a diagonal matrix of atomic masses repli-
cated thrice, and V (g) is the (empirical) potential energy
function [1-3]. Standard numerical schemes for simulat-
ing the dynamical behavior of molecules are based on
discrete time stepping. Such numerical simulations are
complicated by the presence of multiple time scales [2—4].
Standard integrators, such as Verlet [5], have to use time
steps that are small compared to the fastest time scales.
In most cases, those time scales come from bonded inter-
actions. Often the interesting dynamical phenomena of
a molecule happen, however, on much slower time scales
and are primarily related to motions in the dihedral an-
gles [3]. Thus it seems reasonable to average over the
fastest degrees of motion and then to solve the reduced
equations numerically. This allows one to use larger time
steps and the computation of the long-term dynamics of
molecules could become feasible. Several methods for the
removal of the bonded interactions have been suggested
[6-10]. Typical computational methods use (hard) con-
straints that freeze the bond lengths and/or the bond
angles to their equilibrium value [11,12]. However, when
applied to the bond-angle bending, the resulting molecule
becomes too rigid and transition rates are no longer re-
produced correctly [12]. For that reason soft constraints
were introduced [4,10,13] that maintain the flexibility of
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a molecule in terms of its bonds and bond angles.

A completely different approach to long-time integra-
tion is to discretize the equations of motion (1) by an
implicit method and to use a step size that is large with
respect to the bond vibrations [14]. However, it is not
very well understood how poor numerical resolution of
the bond vibrations effects the overall simulation results.

In this paper we derive the reduced equations of mo-
tion by first calculating the free energy in terms of ap-
propriately chosen reaction coordinates. Based on these
analytical considerations, we propose a constraint for-
mulation that can be discretized by the standard SHAKE
algorithm [11]. The additional costs for solving the modi-
fied constraint equations are, in general, less than a com-
plete force evaluation. By means of a simple example
we demonstrate that the modifications suggested in this
paper seem to overcome the transition-rate problem of
standard constraint methods, i.e., reproduce transition
rates in the torsion angles correctly.

II. EQUATIONS OF MOTION

Let us rewrite the equations of motion (1) as

%q = M_lp, ( )
2

where G = Jq and g is the collection of functions g;: R® —

R,7=1,...,m, with corresponding force constants K;;,
ie.,
1., po 1 o
390" Ki(a) = 5 > Kilgi(a))?, (3)
i
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and K is the m-dimensional diagonal matrix with en-
tries K;;. The potential (3) stands for covalent bond
stretching, i.e., §;(g) = r — ro, bond-angle bending,
i.e., §i(g) = ¢ — ¢o, and improper dihedral angles, i.e.,
gi(q) = ¥ — 1o. The potential U(q) contains the proper
torsion potentials, the Lennard-Jones interactions, and
the electrostatic interactions.

The potential (3) represents the fastest degrees of mo-
tion of a macromolecule. To remove those degrees of free-
dom, we have to calculate the free energy of our system in
terms of properly chosen reaction coordinates. Typically
the reaction coordinates are defined by setting the bond
lengths and bond angles to their equilibrium values, i.e.,
one assumes

g(g) =0. (4)

However, this leads to unrealistic simulation results when
(4) is applied to (1) as a constraint through SHAKE [12].
Here we suggest to use soft constraints instead [4,10,13].
These are defined by requiring that the gradient of the
total potential energy

V(g) =Ul(q) + 33(9)"K§(q)

with respect to the bond lengths, bond angles, and im-
proper dihedral angles vanishes, i.e.,

0="VgV(g)

with ¢1:= g(g). Premultiplying the resulting expression
by the matrix K !, this leads to

0=3g(q) + K [G(e)M'G(q)"] ' G(q)M VT (q), (5)

where we have assumed that G(g)M~'G(q)7 is invert-
ible. Then we define the new function.g: R® — R by

9(9):=g(q) + K G(g)M~*G(q9)T] *G(q)M VU (q)
(6)

and the reduced dynamics of (1) will now be defined by
the free energy of (1) on the constraint manifold

M ={(¢g,p) € R?:g(q) =0, G(q)M 'p=0}. (7)

The manifold can be parametrized by the unconstrained
dihedral angles, the external degrees of freedom, and
their corresponding conjugate momenta. For simplicity,
we refer to the reduced dynamics on M as the torsion
dynamics of (1). The corresponding free energy will be
derived in Sec. V.

III. EQUATIONS OF MOTION
IN LOCAL COORDINATES

Let us rewrite (1) for theoretical purposes as

%q = M~1p,
; (8)
2P = —VU(q) — G(q)TKg(q)
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with

9(9)"Kg(a)

U(q) :=V(q) - 5 (9)

Next we reformulate (8) in local coordinates (g1, g2) de-
fined by

I

q1 9(q),

g2 = b(q), (10)

where b(q) is a vector valued function such that
B(g)M~1G(q)T = 0, B(q) = by(q), and the composed
matrix [G(¢q)T B(g)T] is invertible and well conditioned.
The existence of such a coordinate system follows, at
least locally, from the Frobenius theorem [15]. The cor-
responding conjugate momenta are given by

G 5@ 7] = (1)

which results in the Hamiltonian

prM_lGTpl prM_lBsz

= U
H(q,p) 3 3 +
Tk
TR R (12)
2
The equations of motion are now given by
4 0 = GMTIGT py
dt ’
d
prici -VaU—-Kq
T -14T T -1gT
V. p1 GM ™ 'G"p, + p3 BM P2 (13)
2
and
iq =BM'BTp
dt 2 25
d
EPZ = _quU
T -14T T -1T
v, B GM™"G ;—szM Bp: (14)

where, for notational convenience, we suppressed the
arguments in the mappings U(q1,92), G(4g1,492), and
B(qlﬂ (I2) .

We are interested in the free energy H(qz,p2) of the
system (14). This requires taking the ensemble aver-
age in (14) over the variable (g1, p1) using the equations
of motion (13) [16]. In the following section, we show
that the potential U (g1, g2) does not depend on g¢; in the
first-order approximation. This will greatly simplify the
computation of the free energy H(g2,p2), which will be
carried out in Sec. V.

IV. WHY SOFT CONSTRAINTS?

As already mentioned in Sec. II, the definition of the
soft constraint function g is equivalent to
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g(q) = K™t Vﬁlv(q)y (15)

with §1 := g(¢) and § the hard constraint function. Now,
as defined in Sec. II, we rewrite the potential energy V'
as

T
v=U+2 ZK g (16)
and take the gradient with respect to 4y, i.e.,
9 T
V§1V=Vqu+( ‘fl) Ky, (17)
oq
where ¢; = g(q) as before. Now
aql —1
—— =I+0(K 18
e (K (18)
and therefore
V51V=V61U+Kg+0(q1). (19)

This and the definition of g imply that, up to terms of or-
der O(K™1), Vo, U = O(q1). Thus, expanding U(qi, g2)

in ¢, i.e.,

TB
U(q1,92) = U(0,92) + A(a2)1 + %IEE

we obtain A(g2) = O(K™!) and B(gz2) = O(1). Finally,
upon assuming that K + B(gz2) = K, the potential energy
function V can approximately be written as

+---, (20)

T
Vigna) ~ U a) + L20, (21)
which will be used in Sec. V to compute the free energy
of the torsion dynamics of (1). Note that, in terms of the
hard constraint function ¢; = g(g), the corresponding
expansion of the potential energy function U would only
yield A(gz) = O(1) and the approximation (21) could not
be applied.

Remark. The modified constraint condition g(g) = 0
was also applied by Duan et al. [17] in their modified
SHAKE method for constrained energy minimization. The
above discussions makes clear why their modification
yields improved results over the standard constrained
minimization using hard constraints.

V. FREE ENERGY OF TORSION DYNAMICS

In this section we want to derive an approximation
to the free energy H(g2,p2). In a first step we take the
ensemble average in (14) over g;. Neglecting momentum-
dependent terms and applying the result of Sec. IV, the
Boltzmann distribution function p(g;) is given by

plar) = éexp [—ﬂ (ﬁ-;fgl)] ~ (aia),  (22)

where 6(x) is the Dirac delta function. Thus averaging
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over g; becomes trivial.
Taking the ensemble average over the momentum p;
in the expression

(23)

is a bit more tricky. Using equipartitioning of energy [18]
in the kinetic energy, one can show [10] that averaging
over p; leads to

<V PTG(q)M‘IG(q)Tp1>(”
92 2

ens

_ kgT
T2

and subsequent averaging over gq; yields the potential

Veuln det [G(q)M1G(g)T] (24)

Ur(ga) = E%Z In det[G(g)M—1G(g2)T].  (25)

The potential (25) has been introduced before by Fix-
man [8] in the context of statistical mechanics. He
showed that (25) has to be included to make sure that, in
the limit ||K || — 0, the unconstraint system (8) and
the corresponding constraint system have the same re-
duced canonical density function in the variable (g2, p2).
Similar results can be found elsewhere [7,9,19].

The free energy H(q2, p2) is thus (approximately) given
by

7 B(g2)M ' B(q2)"p2

H(gz,pz) = 2 2

+U(g2) + Ur(g2)
(26)

or, in terms of the Cartesian coordinates (gq,p) € R2", by
the Hamiltonian

TM—l
H(a,p) = ==L +U() + Ur(g) +9(@™X  (27)
together with the constraint

g9(g) =0. (28)

The corresponding equations of motion are

Edt-q = M 'p,
4 = VU@ -VUr@-G@TA,  (29)
0 = g(g)-

Note that VU in (29) can be replaced by VV and the
explicit knowledge of the potential U is therefore not
needed.

Finally, a few remarks on the practical computation
of the soft constraint function g are necessary. In_many
cases it will be possible to split the gradient VU into
a strong and a weak contribution. Let us denote the
corresponding entries in the potential U by Unarq, Usost
respectively. Then g can be simplified to
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9(q) = g(q) + K [G(q)M~'G(g)T]™*
xé'(q)M_IVU'ha,d(q) . (30)

With N the number of particles, the costs for evaluating
VUiara will scale like O(N). This is due to the fact that
Uhara will, in general, only include nearest-neighbor in-
teractions, i.e., VUhard is “banded.” In contrast to this,
the computational costs for VU, are of order O(N?2).

Occasionally the term Vg Uhara might become so large
that

9:(0)T Kiig:(q) > ksT (31)

for some 7, 1 < 7 < m, where g; denotes the ith compo-
nent of g. This can happen, for example, if close inter-
actions involving Lennard-Jones potentials occur. Since
such a strong stretching of the bonds and bending of the
bond angles, respectively, are nonphysical, we suggest the
use in practical computations of the modified soft con-
straint function

9(q) = g(q) + C arctan {C"IK"I[é(q)M_lé(Q)T]~1
xG(q)M ™ VUara(a)} (32)

with
1
C = ;\/kBTK—l. (33)

With this modification the energy in the bond stretching
and the bond-angle bending, respectively, can maximally
reach a value of kgT/8.

The matrix G(¢)M~1G(q)T is a banded symmetric
matrix with most entries constant. Thus the computa-
tion of its inverse requires O(m) operations, m the num-
ber of constraints. Often it will be possible to treat the
bond stretching by hard constraints and to include only
bond-angle bending into the soft constraint function g.
This reduces the computational costs by a factor of 2-3.

VI. A FORMULATION USING HARD
CONSTRAINTS AND A MODIFIED ENERGY
FUNCTION

The introduction of the soft constraint function g was
very convenient from an analytical point of view. How-
ever, the numerical solution of (29) is rather expensive.
For example, if one uses a generalization [20] of the well-
known SHAKE [11] algorithm to arbitrary comnstraints,
then one obtains

dn+t1 = qn +AtM—1Pn+1/2,

Prtijz = Pn-1/2 — AtVV(q,)
—AtVUp(gn) — At G(gn)T An, (34)
0 = g(qn+1)

and one has to solve at each integration step a nonlinear
system of equations of the form

4179

9(Q+MIGTA) = 0. (35)

Since evaluation of g requires the computation of Vﬁhud,
each Newton step would become quite costly. This can
be avoided by reformulating (29) as a constraint system
on the manifold

M = {(q,p) € R*™ : §(q) =0, G(¢)M'p =0}, (36)

which is obtained by setting bond lengths and bond an-
gles to their equilibrium values, i.e., § is the hard con-
straint function. This requires a transformation w :
M — M, which leaves g2 = b(q) invariant. In good
approximation this transformation is given by

Q = ¢+ M 1G(9)7p,
0 = g(Q),

and w(q) := Q. Thus the free energy on M is defined by

(37)

Hiap) = MR v iw(g) + Upa) +5@)A (38)

2
together with the (hard) constraint
g(q) =0. (39)
Here Ug is now given by
- knT - -
Ur(q) = _*;_111 det [G(q)M G (9)7]. (40)
The corresponding equations of motion are
d .1
Et_ = M D,
d _ -
P = ~W(@TVV(w(q)) ~ VUr(9) - G0, (41)
0= g(‘l),

with W(q) = wq(q). These equations can be discretized
by the standard SHAKE method, i.e.,

dn+1 = 4n +AtM—1pn+1/25

Pn+1/2 = Pn-1/2 — At W(‘In)TVV(w(IIn))
—AtVUp(gn) — At G(gn)T An,

0 = .‘7(‘1n+1)-

In principle, we have not gained much yet. As defined
above, the computation of w and its derivative W is still
expensive. However, since w(q) — g = O(K 1), the fol-
lowing simplification seems justified: Let us apply one
Newton iteration to (37). Upon neglecting terms of or-
der O(K ~2), the variable @ is now given by

Q := ¢~ A(9)VUnara(9), (42)
with the symmetric matrix A(g) defined by
Aq) = M'G(9)T[G(9M G9!

xKYG(g M *G(¢)T] *G(q)M L.
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The corresponding mapping @ with w(q) := Q, q € M, is
O(K™2) close to w. Upon using these approximations in
(42), the method requires now one additional evaluation
of Vﬁha,d(q) per integration step and computation of the
derivative of A(q)VUpara(g) with respect to ¢. The main
computational cost for this are caused by the Hessian of
Ul(q)-

The formulation (41) has another advantage. It can
easily be implemented into existing methods that use in-
ternal coordinates instead of Cartesian coordinates (see,
for example, Refs. [21,22]). Since most of these methods
use the bond lengths, bond angles, and/or torsion angles
as internal degrees of freedom, the constraint g(g) = 0
is easily implemented by freezing the bond lengths and
bond angles to their equilibrium value. The only mod-
ification concerns the force field, which now has to in-
clude the transformations w,w respectively. Of course,
one could also write the equations of motion directly in
terms of the torsion angles.

VII. EXAMPLE

As a numerical example we consider motion of a sin-
gle butane molecule coupled to a heat bath at T' =
300K. A united-atom representation of butane is used
(CH3—CH,;—CH,;—CHj3;). A harmonic potential is used
to describe the bond-length fluctuations: K, (r — r¢)%/2,
where 7 is the actual length of the bond, with ro =

1.53 A, and K, = 83.7kcal/mol A? [23]. Similarly, a har-
monic potential is used for the bond-angle vibrations:
Ky[cos(p) — cos(¢)]?/2, where ¢ is the actual angle,
¢ is the tetrahedral value of 109.5°, and the force con-
stant K, = 43.1kcal/mol [23]. We do not use Ryckaert-
Bellemans potential [24] for the torsion angle. Instead
the dihedral interaction is modeled by

Viors(¥) = -2 [1~ cos(39)], (43)

where v is the torsion angle. A Lennard-Jones potential
describes the interaction between the two CHg groups as
a function

Vis(r) = 4e [(%)12 - (3)6] , (44)

r

with €/kpT = 120K, o = 3.2, and r the distance be-
tween the two groups. Of course, we do not claim that
these potentials correctly model the dihedral interaction
in butane. Here we are only interested in demonstrat-
ing the differences between free dynamics and different
constraint formulations.

We first determine the effective torsion potential for
our model using hard constraints and soft constraints,
respectively. In other words, we compute

Vz-aff('l/") = I/;:cors(ﬁ‘/") + VLJ (7'(1/)))) (45)

where the distance r(1)) between the two CHj3 groups is
either computed by freezing the bond lengths and bond
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effective torsion potential [kcal/(mol rad)]

torsion angle [rad]

FIG. 1. Effective torsion potential in kcal/molrad for bu-
tane using hard constraints (dotted line) versus the potential
obtained with soft constraints (solid line).

angles to their equilibrium value (hard constraints) or
by setting the bond lengths and bond angles to their
values given by @ = w(q) (soft constraints) with w de-
fined by (37). Here we use in (37) the modified soft con-
straint function (32). The results can be found in Fig.
1. Note the significant difference in the potentials as ¢
approaches 7 where the two CHj3 groups get closest.
We also compute the effective potential using the simpli-
fied @w. The result compared to the potential obtained
for the “exact” w is given in Fig. 2. We also evaluated
the Fixman potential (25). It amounts to a few tenths of
kBT =~ 0.6 kcal/mol at T' = 300K and is therefore small
compared to the potential V g.

To see whether the computed effective potentials re-
flect the true free energy of the reduced system, we sim-
ulate the unconstraint formulation using Langevin dy-

torsion angle [rad]

FIG. 2. Effective torsion potential in kcal/molrad using
soft constraints given by the “exact” transformation w (solid
line) and by the simplified w (dotted line).
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FIG. 3. Boltzmann distribution function for torsion an-
gle using hard constraints (dash-dotted line), soft constraints
(solid line), and unconstrained formulation (dotted line).

namics. We compute the distribution function for the
torsion angle ¥ and compare the result to the distribu-
tion functions corresponding to the effective torsion po-
tentials V,g for hard and soft constraints. The results
can be found in Fig. 3. Note the excellent agreement be-
tween the Boltzmann distribution for the free dynamics
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and the corresponding distribution function for the con-
straint dynamics with soft constraints. The distribution
function for the constraint formulation using hard con-
straints exhibits a too low transition rate from the trans
to the cis conformation, i.e., the constraint system be-
comes too rigid. This agrees with general observations
concerning the application of constraint dynamics (hard
constraints) to bond-angle bending [12]. '

VIII. SUMMARY

In this paper, we have derived a formulation for the
torsion dynamics of molecular systems. The resulting
equations of motion can be discretized either by the well-
known SHAKE method or by methods that use internal
coordinates. We have demonstrated for a single butane
molecule that our formulation yields a qualitative im-
provement over standard constraint methods that freeze
bond lengths and bond angles to their equilibrium value.
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